Betacam
The original Betacam format was launched on August 7, 1982. It is an analog component video format, storing the luminance, “Y”, in one track and the chrominance, on another as alternating segments of the R-Y and B-Y components performing Compressed Time Division Multiplex, or CTDM.[1] This splitting of channels allows true broadcast quality recording with 300 lines of horizontal luminance resolution and 120 lines chrominance resolution (versus ≈30 for Betamax/VHS), on a relatively inexpensive cassette based format.
The original Betacam format records on cassettes loaded with oxide-formulated tape, which are theoretically the same as used by its consumer market-oriented predecessor Betamax, introduced 7 years earlier by Sony in 1975. A blank Betamax-branded tape will work on a Betacam deck, and a Betacam-branded tape can be used to record in a Betamax deck. However, in later years Sony discouraged this practice, suggesting that the internal tape transport of a domestic Betamax cassette was not well suited to the faster tape transport of Betacam. In particular, the guide rollers tend to be noisy.
More at http://en.wikipedia.org/wiki/Betacam
Digital Betacam
Digital Betacam L tapeDigital Betacam (commonly referred to as DigiBeta, D-Beta, DBC or simply Digi) was launched in 1993. It supersedes both Betacam and Betacam SP, while costing significantly less than the D1 format. S tapes are available with up to 40 minutes running time, and L tapes with up to 124 minutes.
The Digital Betacam format records a lossless 2 to 1 DCT-compressed digital component video signal at 10-bit YUV 4:2:2 sampling in NTSC (720×486) or PAL (720×576) resolutions at a bitrate of 90 Mbit/s plus four channels of uncompressed 48 kHz / 20 bit PCM-encoded digital audio. A fifth analog audio track is available for cueing, and a linear timecode track is also used on the tape. It is a popular digital video cassette format for broadcast television use.
Another key element which aided adoption was Sony’s implementation of the SDI coaxial digital connection on Digital Betacam decks. Facilities could begin using digital signals on their existing coaxial wiring without having to commit to an expensive re-installation.
More at http://en.wikipedia.org/wiki/Betacam
Betacam SX
Betacam SX S tapeBetacam SX is a digital version of Betacam SP introduced in 1996, positioned as a cheaper alternative to Digital Betacam. It stores video using MPEG 4:2:2 Profile@ML compression, along with four channels of 48 kHz 16 bit PCM audio. All Betacam SX equipment is compatible with Betacam SP tapes. S tapes have a recording time up to 62 minutes, and L tapes up to 194 minutes.
The Betacam SX system was very successful with newsgathering operations which had a legacy of Betacam and Betacam SP tapes. Some Betacam SX decks, such as the DNW-A75 or DNW-A50, can natively play and work from the analog tapes interchangeably, because they contain both analog and digital playback heads.
More at http://en.wikipedia.org/wiki/Betacam
MPEG IMX
MPEG IMX is a 2001 development of the Digital Betacam format. Digital video compression uses H.262/MPEG-2 Part 2 encoding at a higher bitrate than Betacam SX: 30 Mbit/s (6:1 compression), 40 Mbit/s (4:1 compression) or 50 Mbit/s (3.3:1 compression). Unlike most other MPEG-2 implementations, IMX uses intraframe compression. Additionally, IMX ensures that each frame has the same exact size in bytes to simplify recording onto video tape. Video recorded in the IMX format is compliant with CCIR 601 specification, with eight channels of audio and timecode track. It lacks an analog audio (cue) track as the Digital Betacam, but will read it as channel 7 if used for playback. This format has been standardized in SMPTE 365M and SMPTE 356M as “MPEG D10 Streaming”.[3]
More at http://en.wikipedia.org/wiki/Betacam
HDCAM, introduced in 1997, was the first HD format available in Betacam form-factor, using an 8-bit DCT compressed 3:1:1 recording, in 1080i-compatible downsampled resolution of 1440×1080, and adding 24p and 23.976 PsF modes to later models. The HDCAM codec uses non-square pixels and as such the recorded 1440×1080 content is upsampled to 1920×1080 on playback. The recorded video bitrate is 144 Mbit/s. There are four channels of AES/EBU 20-bit/48 kHz digital audio.
It is used for some of Sony’s cinema-targeted CineAlta range of products (other CineAlta devices use flash storage).
HDCAM
HDCAM SR, introduced in 2003, uses a higher particle density tape and is capable of recording in 10 bits 4:2:2 or 4:4:4 RGB with a bitrate of 440 Mbit/s. The “SR” stands for “Superior Resolution”. The increased bitrate (over HDCAM) allows HDCAM SR to capture much more of the full bandwidth of the HD-SDI signal (1920×1080). Some HDCAM SR VTRs can also use a 2× mode with an even higher bitrate of 880 Mbit/s, allowing for a 4:4:4 RGB stream at a lower compression. HDCAM SR uses the new MPEG-4 Part 2 Studio Profile for compression, and expands the number of audio channels up to 12 at 48 kHz/24 bit.
More at http://en.wikipedia.org/wiki/Betacam